ETS GROUND VEHICLE SYSTEMS ENGINEERING & TECHNOLOGY SYMPOSIUM & Advanced planning briefing for industry

SECURE HEAVY VEHICLE DIAGNOSTICS

Jeremy Daily, Associate Professor, Colorado State University Prakash Kulkarni, Systems Engineer, DG Technologies

Vulnerable Vehicle Diagnostics

Vehicle Electronics and Architecture (VEA) & Cyber

Who has access to the vehicle?

Diagnostic and maintenance systems are frequently connected to trucks.

GROUND VEHICLE SYSTEMS ENGINEERING & TECHNOLOGY SYMPOSIUM & ADVANCED PLANNING BRIEFING FOR INDUSTRY

- Unknown and uncontrolled diagnostic systems are trusted on the J1939 network
- Technicians frequently connect to the Internet to update software
- Diagnostic Software is written to communicate through the RP1210 API.
 - Started with Windows 3.1
 - User selects driver with information in an INI file

Remote attackers only need access to the diagnostics PC to perform a cyberattack.

OUND VEHICLE SYSTEMS ENGINEERING & TECHNOLOGY SYMPOSIUN Invanced planning briefing for industry

System Requirements

- SR1: Maintain compatibility with existing J1939 Architectures
- **SR2:** Provide a solution that is agnostic of the vehicle diagnostic adapter.
- **SR3:** Enable offline diagnostics sessions.
- SR4: Store CAN Data Logs based on event triggers.

Cybersecurity Requirements

- **CR1:** Use unique key material so any key leakage does not compromise other systems.
- **CR2:** Use secure storage hardware for private key storage on the vehicle.
- **CR3:** Use existing best practices for cryptographic implementations
 - AES-128 for symmetric encryption
 - EEC P256
 - New or untested ciphers shall not be used.
- **CR4:** Any sensitive key material should be encrypted for storage.

VEHICLE SYSTEMS ENGINEERING & TECHNOLOGY SYMPOSIUN

Hardware Prototype Design and Realization

Vehicle Electronics and Architecture (VEA) & Cyber

Printed Circuit Board

Assembled Circuit Board

SYMPOSIUM **NG BRIEFING FOR INDUSTRY**

Software Components

Vehicle Electronics and Architecture (VEA) & Cyber

- **Embedded Firmware**
 - Provision

print bytes(aes key, sizeof(aes key)); Serial.println("Initialization Vector: "); print bytes(init vector, sizeof(init vector));

Serial.println("Stored Public Key: ");

Serial.println("Own Public Key: ");

atecc.AES_ECB_encrypt(aes_key,0xFFFF,false); memcpy(&encrypted key[0],&atecc.AES buffer[0],16); Serial.println("Encrypted AES Session Key: "); print bytes (encrypted key, sizeof (encrypted key));

print bytes (own public key, sizeof (own public key));

atecc.readPublicKey();

//encrypted aes key

- Write Configuration
- **Executable Firmware** InVehicleCryptographicGateway | Arduino 1.8.12

print bytes(atecc.storedPublicKey, sizeof(atecc.storedPublicKey)); atecc.ECDH(atecc.storedPublicKey, ECDH OUTPUT IN TEMPKEY,0x0000,true); // Add the ATECC Encryption Scheme here and update the value of the

memcpy(own public key,atecc.publicKey64Bytes,sizeof(own public key));

- **RP1210** App Python/PyQt5
 - Requests for API Connection

210			
🕻 💼 🏬 🔛 🖳	<i>§</i>	Select RP1210 ?	×
1939 PGNs / J1939 SPNs	V J1939 Diagnostic Codes V J1939 Freeze Frames V Unified Dia	System RP1210 Vendors:	
Request Buttons	Item Value	DGDPA5MA - DG Technologies DPA 5 Multi Application	\sim
Request VIN	Component Information	Available RP1210 Vendor Devices:	
Request Component ID	component information	2: DG DPA 5 Pro (MA) USB, DG DPA 5 Pro (MA) USB,USB	\sim
	Distance Data	Available Device Protocols:	
Request Software ID		CAN: CAN Network Protocol	\sim
Request ECU Distances	ECU Time Data	Available Speed Settings	
Request FCU Hours		Auto	\sim
		Desired Channel	
Refresh Data		1	\sim
		OK Cance	

Welcome, Ground Vehicle Systems Engineers

e Edit Sketch Tools Help

Separating a J1939 Frame into two 8-byte frames for AES-128 blocks

ID VEHICLE SYSTEMS ENGINEERING & TECHNOLOGY SYMPOSIUM Anced planning briefing for industry

Encryption Setup

Vehicle Electronics and Architecture (VEA) & Cyber

Make sure device is provisioned; If provisioned, use the hardware security module for setting up ephemeral symmetric session keys.

STEMS ENGINEERING & TECHNOLOGY SYMPOSIUM NG BRIEFING FOR INDUSTRY

Cryptographic Gateway

- 1. Generate Random
 - Initialization Vector
 - Session AES Key
- 2. Encrypt Session Key
- 3. Wait for Crytpo Data Request
- 4. Start Session
- 5. Reflect Heartbeat
- Encrypt Vehicle Traffic
- Decrypt Application (VDA) Traffic

PC Diagnostics App

- 1. Connect RP1210 with CAN at 1Mbps
- 2. Request Crypto Data
 - Gateway Public Key
 - Initialization Vector
 - Encrypted Public Key
- 3. Start Session
- 4. Send Heartbeat
- Decrypt Gateway Traffic
- Encrypt Application Traffic

I VEHICLE SYSTEMS ENGINEERING & TECHNOLOGY SYMPOSIUM

Interrupt Service Routines

Vehicle Electronics and Architecture (VEA) & Cyber

CAN messages are handled using ISRs Special messages:

- Heartbeat
- Requests
- Abort
- Initialization Vector
- Encrypted Ephemeral Session Key
- Encrypted data

TECHNOLOGY SYMPOSIUM

Test Truck

Vehicle Electronics and Architecture (VEA) & Cyber

2014 Kenworth T270 Class 6 PACCAR PX7 Engine Allison Transmission

> UND VEHICLE SYSTEMS ENGINEERING & TECHNOLOGY SYMPOSIUN Ivanced planning briefing for industry

Secure Gateway Module Installation

Vehicle Electronics and Architecture (VEA) & Cyber

GROUND VEHICLE SYSTEMS ENGINEERING & TECHNOLOGY SYMPOSIUM & Advanced planning briefing for industry

Test Results

• Attacks were implemented with two entry points

- 1. DLL Driver
 - Corrupt Shim DLL intercepts messages between the Diagnostic PC and the VDA, changes the data and passes the changed data
 - Shim DLL works in conjunction with the vendor-supplied DLL
- 2. VDA Firmware
 - Compromised VDA with modified firmware that does not faithfully transfer the message traffic between the vehicle network and the PC
- Attacks are representative of Man-in-the-Middle attacks
- Attacks target two types of messages
 - Single Frame J1939 Messages
 - Multiframe messages using the J1939 Transport Protocol
- A representative PC Application provides the Diagnostic User Interface

UND VEHICLE SYSTEMS ENGINEERING & TECHNOLOGY SYMPOSIUM

GROUND VEHICLE SYSTEMS ENGINEERING & TECHNOLOGY SYMPOSIUM

Example of Compromising a Multi-Packet Message

Vehicle Electronics and Architecture (VEA) & Cyber

- Attacks sought out VIN and source address patterns to affect traffic
- Followed well understood J1939 and RP1210 definitions
- All data passing through RP1210 can be logged and exfiltrated
 - Reveal operational readiness
- When AES encrypted, all session data is patternless
 - No pattern matching attack could work
 - Exfiltration is also meaningless

D VEHICLE SYSTEMS ENGINEERING & TECHNOLOGY SYMPOSIUM

Correct Engine Control Module Data

Vehicle VIN: 1XKYDP9X7FJ469058* Engine Hours of Operation: 1199.75

Secure Diagnostics Attack Mitigation

- Vulnerabilities exist in heavy vehicle diagnostics systems.
 - VDA Firmware Updaters
 - Shim DLLs to wrap authentic drivers
- Connections of diagnostic services and hardware must be included in threat assessments.
- Access to VDA hardware and firmware show unique attacks
- Proposed Solution Highlights
 - PC Diagnostic Application communications are encrypted
 - Share ephemeral symmetric session keys using ECDH
 - Secure private key storage with the ATECC608 hardware security module
 - Solution can be retro-fitted to existing vehicles in the field
 - Open source physical hardware prototype

ND VEHICLE SYSTEMS ENGINEERING & TECHNOLOGY SYMPOSIUM